324 research outputs found

    A Light Stop with a Heavy Gluino: Enlarging the Stop Gap

    Full text link
    It is widely thought that increasing bounds on the gluino mass, which feeds down to the stop mass through renormalization group running, are making a light stop increasingly unlikely. Here we present a counter-example. We examine the case of the Minimal Composite Supersymmetric Standard Model which has a light composite stop. The large anomalous dimension of the stop from strong dynamics pushes the stop mass toward a quasi-fixed point in the infrared, which is smaller than standard estimates by a factor of a large logarithm. The gluino can be about three times heavier than the stop, which is comparable to hierarchy achieved with supersoft Dirac gluino masses. Thus, in this class of models, a heavy gluino is not necessarily indicative of a heavy stop.Comment: 6 pages, 1 figur

    Marginal Breaking of Conformal SUSY QCD

    Full text link
    We provide an example of a 4D theory that exhibits the Contino-Pomarol-Rattazzi mechanism, where breaking conformal symmetry by an almost marginal operator leads to a light pseudo-Goldstone boson, the dilaton, and a parametrically suppressed contribution to vacuum energy. We consider SUSY QCD at the edge of the conformal window and break conformal symmetry by weakly gauging a subgroup of the flavor symmetry. Using Seiberg duality we show that for a range of parameters the singlet meson in the dual theory reaches the unitarity bound, however, this theory does not have a stable vacuum. We stabilize the vacuum with soft breaking terms, compute the mass of the dilaton, and determine the range of parameters where the leading contribution to the dilaton mass is from the almost marginal coupling.Comment: 12 pages, no figure

    Third Annual Conference on Animals and the Law

    Get PDF

    A Pain Reporting Platform for Adolescents with Sickle-Cell Disease

    Get PDF
    This paper presents the latest version of the Pain Reporting and Management mHealth Platform for adolescent Sickle Cell Disease, developed in collaboration by Arizona State University and the Children’s National Health System. This platform supports a cross-platform mHealth app, reporting and task management API, and portal dashboard for care provider monitoring. Extending our prior work, the latest version adds enhanced app features (games, power-ups, badges, notifications) to promote sustained adherence to the reporting protocol, and enhanced reporting features for providers that track high fidelity compliance measures and aggregate outcome scores. This paper summarizes the architecture and principle features of the platform, and presents data supporting improved compliance

    Mortality and basal area growth following precommercial thinning in stands affected by Armillaria, Laminated and Tomentosus root diseases in southern British Columbia

    Get PDF
    Precommercial thinning aims to reduce the density of immature stands to stimulate growth of well-spaced crop trees of preferred species and free from defects and disease. The chronic persistence of Armillaria, Laminated and Tomentosus root diseases in coniferous forests of British Columbia, Canada may offset potential gains in timber yield of commercially important tree species by creating stumps that the fungi utilize as an energy source to infect neighbouring trees. In juvenile plantations and naturally regenerated stands in six biogeoclimatic (BEC) zones with evidence of root disease caused by Armillaria ostoyae (8 sites), Coniferiporia sulphurascens (2 sites) or Onnia tomentosa (1 site), five of ten 20 m square plots per site were randomly selected for thinning to British Columbia Ministry of Forests specifications. Crop tree diameter at breast height and mortality from all causes were recorded at establishment and periodically thereafter up to 19 years post-thinning. Logistic regression analysis of mortality rates showed significant differences among root disease pathogens, between planted and natural stands, and among ecological zones. Yet over all sites, differences between thinned and control plots were not significant. At the final assessment, crop tree basal area was higher in thinned than in control plots at 10 of 11 sites. Root disease, including infected and dead trees and other lethal biotic and abiotic agents, reduced potential yield in both treatments (thinned and control). At several Armillaria sites, mortality was slightly to substantially higher in thinned than in control plots, suggesting that thinning can increase the amount and potential of inoculum which may continue to adversely impact productivity of those stands. Recommendations for silvicultural management of the three root diseases are discussed

    Autonomous sensors for nutrient monitoring

    Get PDF
    Cultural eutrophication is the process whereby a body of water becomes over-enriched with nutrients, in particular nitrogen (N) and phosphorus (P), resulting in algal blooms and subsequent death and decomposition which deplete oxygen levels in the water (i.e. hypoxia), leading to the loss of aquatic animals (e.g. fishes). This is caused by excess N and P. Agriculture is the major source to Irish rivers and estuaries, with 70% of P loads and 82% of N loads attributed to agricultural sources . Hypoxia in the Gulf of Mexico has been linked to excessive N loading. Nuisance algal blooms in Lake Erie have been linked to agricultural P. Previous efforts have concentrated on measuring agricultural runoff directly using grab samples or spot measurements, but high frequency sampling will be essential to accurately characterize the extent and temporal resolution of agricultural impacts. Low cost real-time nutrient sensors are critical for quantifying the influence of agriculture on freshwater, and more broadly, for effective water management throughout Irish, European, and American river basins

    Simulation of Cement Mill to Predict and Mitigate the Over-Heat Phenomenon: an Approach to Optimize the Energy Consumption in Cement Industry

    Get PDF
    being one of the most energy-intensive industries, cement industry requires to evaluate the energy efficiency of their operating units, one of them is cement mill. Functioning as a mixing unit of several materials, i.e., clinker, limestone, gypsum, and trass with their initial heat and propensity of heat generation during milling, over-heat in the cement mill occurs frequently. It should be avoided in order to establish efficiency. Therefore, a mathematical model was generated in this study to predict and to mitigate this overheat phenomenon. This cement mill mathematical model has been generated using mass and energy balances. The output of the model is temperature profile versus residence time with targeted water content of the product that the optimum residence time can be calculated. Based on the temperature profile with a targeted water content of the product, it can be concluded that the optimum operating condition of the cement mill lies in the range of 5 to 30 seconds of materials residence time in the cement mil
    corecore